Conformational changes and the role of metals in the mechanism of type II dehydroquinase from Aspergillus nidulans.

نویسندگان

  • J R Bottomley
  • A R Hawkins
  • C Kleanthous
چکیده

We have investigated the involvement of metal ions and conformational changes in the elimination reaction catalysed by type II dehydroquinase from Aspergillus nidulans. Mechanistic comparisons between dehydroquinases and aldolases raised the possibility that, by analogy with type II aldolases, type II dehydroquinases may require bivalent metal ions for activity. This hypothesis was tested by a combination of metal analysis, effects of metal chelators and denaturation/renaturation experiments, all of which failed to show any evidence that type II dehydroquinases are metal-dependent dehydratases. Analysis of native and refolded enzyme by electron microscopy showed that the dodecameric type II enzyme from A. nidulans adopts a ring-like structure similar to that of glutamine synthase, suggesting an arrangement of two hexameric rings stacked on top of one another. Evidence for a ligand-induced conformational change came from both chemical modification and proteolysis experiments. Inactivation data with the arginine-specific reagent phenylglyoxal indicated that, at pH 7.5, two arginine residues are modified: one modification displays affinity-labelling kinetics and has a 1:1 stoichiometry, while the other displays simple bimolecular kinetics and a stoichiometry of 2:1. The labelling at the affinity site is markedly enhanced by the addition of ligand, implying that this active-site residue is further exposed to modification by phenylglyoxal as a result of a ligand-induced conformational change. A combination of proteolysis and electrospray MS experiments identified the site of affinity labelling as Arg-19. The highly conserved N-terminal region encompassing Arg-19 of type II dehydroquinase was found to be particularly susceptible to proteolytic cleavage Limited digestion with proteinase K inactivates the enzyme, although the type II oligomeric structure is retained, and ligand binding partially protects against this inactivation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Down-Regulation of sidB Gene by Use of RNA Interference in Aspergillus nidulans

Background: Introduction of the RNA interference (RNAi) machinery has guided the researchers to discover the function of essential vital or virulence factor genes in the microorganisms such as fungi. In the filamentous fungus Aspergillus nidulans, the gene sidB plays an essential role in septation, conidiation and vegetative hyphal growth. In the present study, we benefited from the RNAi strate...

متن کامل

A comparison of the enzymological and biophysical properties of two distinct classes of dehydroquinase enzymes.

This paper compares the biophysical and mechanistic properties of a typical type I dehydroquinase (DHQase), from the biosynthetic shikimate pathway of Escherichia coli, and a typical type II DHQase, from the quinate pathway of Aspergillus nidulans. C.d. shows that the two proteins have different secondary-structure compositions; the type I enzyme contains approx. 50% alpha-helix while the type ...

متن کامل

Molecular cloning and characterization of the aroD gene encoding 3-dehydroquinase from Salmonella typhi.

The aroD gene from Salmonella typhi, encoding 5-dehydroquinate hydrolyase (3-dehydroquinase), has been cloned into Escherichia coli and the DNA sequence determined. The aroD gene was isolated from a cosmid gene bank by complementation of an S. typhimurium aroD mutant. Analysis of the DNA sequence revealed the presence of an open reading frame capable of encoding a protein of 252 amino acids wit...

متن کامل

Control of metabolic flux through the quinate pathway in Aspergillus nidulans.

The quinic acid ulitization (qut) pathway in Aspergillus nidulans is a dispensable carbon utilization pathway that catabolizes quinate to protocatechuate via dehydroquinate and dehydroshikimate(DHS). At the usual in vitro growth pH of 6.5, quinate enters the mycelium by means of a specific permease and is converted into PCA by the sequential action of the enzymes quinate dehydrogenase, 3-dehydr...

متن کامل

Nucleotide sequence encoding the biosynthetic dehydroquinase function of the penta-functional arom locus of Aspergillus nidulans.

The nucleotide sequence of a 1.9 Kb HindIII fragment of DNA derived from the arom locus of A.nidulans and encoding the biosynthetic dehydroquinase activity has been determined. The sequences encoding the biosynthetic and catabolic dehydroquinase enzymes of A.nidulans show no detectable homology, strongly suggesting convergent evolutionary pathways. The messenger RNA specified by the arom locus ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Biochemical journal

دوره 319 ( Pt 1)  شماره 

صفحات  -

تاریخ انتشار 1996